Functoriality and uniformity in Hrushovski's groupoid-cover correspondence

نویسندگان
چکیده

منابع مشابه

Functoriality and Reciprocity

A variant of the usual supersymmetric nonlinear sigma model is described, governing maps from a Riemann surface Σ to an arbitrary almost complex manifold M . It possesses a fermionic BRST-like symmetry, conserved for arbitrary Σ, and obeying Q = 0. In a suitable version, the quantum ground states are the 1+1 dimensional Floer groups. The correlation functions of the BRST-invariant operators are...

متن کامل

Functoriality in Geometric Data

This report provides an overview of the talks at the Dagstuhl Seminar 17021 “Functoriality in Geometric Data”. The seminar brought together researchers interested in the fundamental questions of similarity and correspondence across geometric data sets, which include collections of GPS traces, images, 3D shapes and other types of geometric data. A recent trend, emerging independently in multiple...

متن کامل

Langlands Functoriality Conjecture

Functoriality conjecture is one of the central and influential subjects of the present day mathematics. Functoriality is the profound lifting problem formulated by Robert Langlands in the late 1960s in order to establish nonabelian class field theory. In this expository article, I describe the Langlands-Shahidi method, the local and global Langlands conjectures and the converse theorems which a...

متن کامل

The Monodromy Groupoid of a Lie Groupoid

R esum e: Nous d emontrons que, sous des circomstances g en erales, l'union disjoint des couvertes universales des etoiles d'un groupo de de Lie admet le structure d'un groupo de de Lie auquel que le projection a une propri et e de monodromie sur les extensions des morphismes emousse. Ca compl etes une conte d etailles des r esultats annonc es par J. Pradines. Introduction The notion of monodro...

متن کامل

Where Stands Functoriality Today?

The notion of functoriality arose from the spectral analysis of automorphic forms but its definition was informed by two major theories: the theory of class fields as created by Hilbert, Takagi, and Artin and others; and the representation theory of semisimple Lie groups in the form given to it by Harish-Chandra. In both theories the statements are deep and general and the proofs difficult, hig...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 2018

ISSN: 0168-0072

DOI: 10.1016/j.apal.2018.03.005